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Abstract. We report the inclusion of temperature effects on the Mahan-Nozières-De Dominicis frame-
work to study both many-body and temperature effects in photoluminescence spectra of doped semi-
conductors. The electronic part of the correlation function characterizes the photoluminescence spectra.
We have treated the optical valence hole as a localized scattering potential center and studied effects of
the electron-hole interaction enhancement on the photoluminescence spectra leading to the appearance of
shake-up structures. We also have identified a term in the correlation function which represents the finite-
temperature contribution to the intensities of the shake-up structures. The method is used to study the
magnetophotoluminescence of modulation-doped quantum wells with a weak periodic lateral potential.

PACS. 71.10-w Theories and models of many electron systems – 78.66-w Optical properties of specific
thin films, surfaces, and low dimensional structures

1 Introduction

Recent experimental and theoretical studies of the pho-
toluminescence (PL) spectra of n-doped low-dimensional
semiconductors have attracted considerable interest due
to the appearance of many-body effects, as e.g. those
that give origin to the Fermi-edge singularity (FES) [1].
The application of a high magnetic field perpendicu-
lar to the plane of a quasi-two-dimensional doped sys-
tem leads to the investigation of the many-body ef-
fects on PL spectra in the regime of quantum Hall
effect (QHE) [2–5]. Some experiments show new many-
body effects related to the spin resolution in PL spec-
tra of a system in which the ν = 1 quantum Hall
regime is achieved [3]. In order to study such effects
from a theoretical point of view, a zero-temperature
formulation has been carried out where the authors
have associated these many-body effects to the spin
shake-up processes [6]. Besides, some PL experiments [2]
also show finite-temperature effects on the shake-up pro-
cesses [4] in the integer quantum Hall regime without a
resolution of the electronic spin. A further analysis shows,
on the other hand, the influence of the finite valence-hole
effective mass on the PL spectra in the quantum Hall
regime [5]. All these works reflect both a strong experi-
mental and theoretical interests in the finite-temperature
PL spectra studies of quasi-two-dimensional (Q2D) sys-
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tems under a perpendicular magnetic field. Our main mo-
tivation here is to extend to the finite-temperature the
Mahan-Nozières-De Dominicis (MND) formulation in or-
der to be able to study both the many-body and temper-
ature effects on PL spectra of Q2D systems.

We would like to point out that some many-body
finite-temperature approaches have been successfully used
to study PL spectra in modulation-doped quantum
wells [7,8]. The one developed by Ohtaka and Tanabe
(OT) is based on the Fermi golden rule. It involves a
careful description of temperature effects but it becomes
rather cumbersome from the practical point of view while
we are looking for an approach where we may describe, in
a simpler manner, both many-body and temperature ef-
fects. We have chosen to look for an extension of the zero
temperature MND formalism which has already proved to
be a satisfactory approach with a rigorous description of
the physical processes besides its practical manageability
[9–13]. For this reason, the aim of this work is to present a
solid procedure to include the effects of temperature on the
emission MND correlation function, the key point in the
description of PL spectra. We have adopted a procedure
similar to the one followed by Mahan [11] to calculate the
zero-temperature scattering matrix in the second quanti-
zation scheme. It must be stressed that the main goal of
this paper is to present a method which properly clarifies
the calculation of PL spectra at finite-temperature within
a second quantization scheme. Subsequently, the method
is applied to a particular quasi-two-dimensional system in
which the spin of the electrons is not resolved. Studies
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of PL spectra of spin systems should require a method
which takes into account the spin-spin excitation effects.

The paper is organized as follows. In Section 2, our ex-
tension to finite temperatures of the MND current-current
correlation function describing PL spectra is presented.
We discuss new terms appearing in the correlation func-
tion and we study its T → 0 limit. In Section 3 we apply
our theory to a Q2D system under both a perpendicular
magnetic field and a weak periodic modulation potential
and comparing our results with the available experimental
information [14]. The effects of the electron-hole interac-
tion enhancement in the PL spectra of the system are
investigated as well.

2 Extension to the finite temperature
of the MND formulation for PL

The current-current correlation function which describes
the PL spectra is written here within an one-body pic-
ture [10], in which the Coulomb interaction between con-
duction electrons produces quasiparticles near the Fermi
surface. We assume that electron-electron interaction can
be taken into account in a phenomenological way so that
we already work with quasiparticles. In this description,
each quasiparticle only interacts with a scattering poten-
tial associated to a valence hole. Moreover, the hole poten-
tial is assumed to be switched on infinitely fast so that,
one consider the electron-hole interaction to be instan-
taneously screened by charge density fluctuations of the
electrons in the Fermi sea.

We must point out that, in many recent reports
a crucial factor which allowed the experimental obser-
vation of the FES in PL was the localization of the
valence hole by a form of disorder, typically alloy fluctua-
tions in InxGa1−xAs wells [15]. Moreover, in a quasi-one-
dimensional electron gas the FES was also easier observed
when the valence hole were localized by acceptor impuri-
ties [16]. In order to compare our theoretical results with
the experimental situation, we are going to treat the opti-
cal created hole as a scattering potential center localized
in the valence band.

We start with the current-current correlation func-
tion E(τ), whose Fourier transformed characterizes the PL
spectra of doped systems at finite temperature, given by

E(τ) = eτεh
∑
λ,λ′

mλm
∗
λ′Lλ,λ′(τ), (1)

with

Lλ,λ′(τ) =
〈
c+λ (τ)S (τ) cλ′

〉
, (2)

which characterizes the electronic part of the correlation
function related to emission. In the above equations, the
time (usually labeled as τ) becomes a complex quantity,
i.e., τ = it, and the bracket 〈〉 stands for the thermo-
dynamic average. The transition-matrix element mλ is
given by

mλ =
∑
k

Mk 〈λ| k〉 , (3)

where 〈λ| k〉 (Mahan excitons) is the overlap between the
initial single-particle state |λ〉 and the final single-particle
state |k〉. Such overlaps can be calculated solving the Wan-
nier equation [13] which takes into account the electron-
hole interaction Ve−h. In the calculation, we consider a
photocreated hole localized in the valence band with en-
ergy εh and a contact electron-hole interaction which
switches on already screened. Moreover, Mk =M0 〈k|h〉
are the single-particle transition matrix elements, which
are characterized by the localized valence hole state |h〉
and the momentum matrix element M0 (taken as a con-
stant in this work).

For PL process, the time-evolution operator S(τ) is
defined as

S (τ) = eτK̂he−τK̂g , (4)

where the Hamiltonian K̂g =
∑
k ξkc

+
k ck (K̂h =∑

λ ξλc
+
λ cλ) describes the many-particle system in the ab-

sence (presence) of the core hole. The operator cλ(c+λ ) de-
stroys (creates) a relaxed electron in the conduction band
state |λ〉 with a single-particle energy ξλ = (ελ − µ), where
µ is the chemical potential. On the other hand, ck(c+k ) de-
stroys (creates) an electron in the conduction band state
|k〉, with single-energy ξk = (εk − µ). Noticed that the
single-particle basis {|k〉} characterizes the many-particle
system in the absorption (emission) initial (final) state,
i.e., without the core-hole potential. On the other hand,
the single-particle basis {|λ〉} describes the many-particle
system in the emission (absorption) initial (final) state,
i.e., when the electron-hole potential is present.

In order to examine the one-body approximation,
Mahan [11] used scattering theory to write out the zero-
temperature expression of E(τ) in terms of single-particle
quantities. With such a procedure, he showed that the
emission expression of Combescot and Nozières (CN) [17]
can also be derived by scattering theory. Following the
CN formulation, the extension of the optical correlation
function to finite temperature is a very difficult task due
to the fact that we have to deal with a linear combination
of different Slater determinants [18]. So in this work we
will avoid the CN formulation, because the Mahan’s re-
derivation of the optical correlation function leads to an
easier extension to finite-temperature.

In order to obtain the electronic parts of both E(τ) at
finite temperature, we expand the expression of S(τ) as

S(τ) =
∞∑
n=0

(
−1
~

)n 1
n!

×
∫ τ

0

dτ1...
∫ τ

0

dτnT τ [V (τ1)...V (τn)] . (5)

In the above equation, the time-dependent electron-hole
potential V (τn) can be written in the single-state ba-
sis {|λ〉}

V (τn) =
∑
λ1,λ2

Ve−h(λ1, λ2)cλ1(τn)c+λ2
(τn).
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In the expansion of the zero-temperature expression of
S(τ), Mahan kept only the exciton terms and ignored the
terms coming from the conduction electron-hole pairs in
the electron gas, which provoke the Anderson orthogonal-
ization catastrophe. In other words, he kept only the terms
in the series represented by connected diagrams and ig-
nored all the disconnected diagrams. The hole self-energy
effects in the correlation functions E(τ) were neglected.
We are going to follow similar steps to calculate the elec-
tronic part of both E(τ) at finite temperature. This is
possible because the temperature does not include any
other type of diagrams, i.e., the diagrams appearing in
the finite-temperature expansion of S(τ) are those which
already exist at zero-temperature.

We have performed the expansion of the S-matrix in
equation (2), keeping only the terms which correspond to
the connected diagrams. After some algebra, we obtain
the exact solution for Lλ,λ′(τ), given by

Lλ,λ′(τ) = L1
λ,λ′(τ) + L2

λ,λ′(τ) (6)

where

L1
λ,λ′(τ) =

〈
λ′
∣∣∣eτK̂hP̂EX̂EP̂E

∣∣∣λ〉 (7)

and

L2
λ,λ′(τ) =

〈
λ′
∣∣∣eτK̂hP̂E [1− Φ̂EX̂EP̂E

]∣∣∣λ〉 . (8)

The operator P̂E in equation (7) is the projection operator
on the initial single-particle states of the emission process

P̂E =
∑
λ

∣∣λ 〉nTλ 〈λ∣∣ , (9)

where nTλ is the Fermi-Dirac distribution function

nTλ =
1

1 + eβξλ
· (10)

The time-evolution operator for emission Φ̂E in equation
(8), has an S-matrix form

Φ̂E = Φ̂E(τ) = eK̂hτ e−K̂gτ . (11)

The last ingredient in equations (7, 9) is the operator

X̂E = 1 +
[
1− P̂E(1− Φ̂E)

]−1

P̂E(1− Φ̂E), (12)

which give rise to the replacement transitions.
We would like to emphasize that, apart from the ap-

proximation of neglecting hole self-energy effects (i.e. to
neglect disconnected diagrams, or hole-recoil effect), the
correlation function equation (6) is exact, because the ex-
pansion of S(τ) can be exactly summed. Moreover, the
temperature dependence of the hole self-energy could be
important to the PL spectra and, as far as we know, there
is no previous theoretical study of temperature depen-
dence of hole spectral functions. In such a study, one could
proper describe the temperature behavior in experiments

involving PL of doped quantum wells. However, in the
present work we will not consider the hole self-energy ef-
fects since our main purpose is to investigate the new fi-
nite temperature contributions coming from the electronic
part of the PL correlation function.

Equation (6) do not include any valence-hole scatter-
ing, since we are considering an immobile hole. This sim-
plifies the identification of the disconnect diagrams in the
S(τ) expansion, and allows one to find out the electronic
part of the optical correlation function. If we consider the
valence-hole scattering, i.e., the case of mobile valence
holes, the exact connected-diagram summation becomes
extremely difficult.

Finally, in the following subsections we will analyze the
terms L1

λ,λ′
(τ) and L2

λ,λ′
(τ) contributing to our expression

for the PL spectra. In order to do so, we are going to study
the T → 0 limit of these terms and compare the results
with the well known MND zero-temperature emission ex-
pressions.

2.1 T→ 0 limit of L1
λ,λ′(τ) and L2

λ,λ′(τ)

At zero temperature, the Fermi-Dirac distribution func-
tion n0

λ, as given by equation (10), can only take two
values: n0

λ = 0 for non-occupied states, and n0
λ = 1 for

occupied states. Thus, at zero temperature the equality
n0
λ = (n0

λ)2 holds so that, the quantity P̂E in equation (9)
becomes an unitary operator

P̂E =
(
P̂E
)2

. (13)

Notice that this holds only for those cases where the tem-
perature is strictly zero.

Using the unitarity property of the projection-like op-
erator P̂E , the T → 0 limit of the operator X̂E can be
written as

X̂0 = lim
T→0

X̂E = (P̂EΦ̂E)−1P̂E , (14)

where we have used the identity

(P̂EΦ̂E)−1P̂EΦ̂E = 1. (15)

Therefore, according to equation (14), the zero-
temperature expression for L1

λ,λ′
(τ) is given by

lim
T→0
L1
λ,λ′

(τ) =
〈
λ′
∣∣∣eitξλ′ P̂E(P̂EΦ̂E)−1P̂E

∣∣∣λ〉 , (16)

while, from equation (15), we have

lim
T→0
L2
λ,λ′

(τ) = 0. (17)

The term L2
λ,λ′

(τ), at zero temperature, vanishes and, ac-
cording to equation (16), the zero-temperature PL spectra
is the Fourier transform of

L0(t) = eitεh
∑
λ,λ′

MλM
∗
λ′

〈
λ′
∣∣∣eitξλ′ P̂E(P̂EΦ̂E)−1P̂E

∣∣∣λ〉
(18)
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which is the MND expression given in reference [11]. Such
expression has been successfully used in calculations of
the zero-temperature PL spectra of quasi-2-dimensional
doped systems [12]. Thus one can interpret it as the tran-
sition of a relaxed conduction-electron to the valence band
with an instantaneous rearrangement of the Fermi sea to
the new states in which the electrons do not feel the hole
potential. Such transitions are mediated by the exchange
processes of electrons inside the Fermi sea, i.e., they are re-
placement transitions. These exchange processes are char-
acterized by the operator (P̂EΦ̂E)−1 of equation (18).

One can see from equations (16) and (17) that the
results of the finite-temperature extension of the MND
PL expressions are analogous to the absorption case [19],
where a new contribution due to the finite values of tem-
perature appears. In the PL case, such new contribution
is represented by equation (8) and it must be interpreted
in the same way as done in the absorption case.

2.2 Comparison between finite-temperature absorption
and emission expressions

Let us discuss the meaning of each term in Lλ,λ′(τ). For
convenience, we write here the absorption counterpart
of L1

λ,λ′
(τ) and L2

λ,λ′
(τ). They are given by F1

k,k′(τ) =

〈k|e−τK̂g(1 − P̂A) Φ̂AX̂A(1 − P̂A)|k′〉 and F2
k,k′(τ) =

〈k|e−τK̂h(1− P̂A)[1−X̂A(1− P̂A)]|k′〉, respectively. These
absorption results have been taken from reference [19].
Here the operators P̂A =

∑
k |k〉nTk 〈k|, Φ̂A = eK̂gτe−K̂hτ

and X̂A = 1 + [1 − P̂A(1 − Φ̂A)]−1P̂A(1 − Φ̂A) are the
absorption counterpart of the emission expressions given
by equations (9-12). At zero temperature, L2

λ,λ′
(τ) and

F2
k,k′(τ) vanish. At this limit, we can recover the zero-

temperature results obtained by Mahan [11].F1
k,k′(τ) con-

tains two different kind of transitions. The first one is
associated with the first term of the operator X̂A, i.e.,
the identity operator, which gives rise to the direct scat-
tering of an injected electron above the Fermi surface
with an instantaneous rearrangement of the Fermi sea
to the new state in which electrons feel the hole po-
tential. The second one, is associated with the operator
[1− P̂A(1− Φ̂A)]−1P̂A(1− Φ̂A), which gives rise to scat-
tering mediated by exchange processes provided by the
occupied states inside the Fermi sea. These two kind of
transitions occur even at zero-temperature and they were
named by Friedel [20] as the direct and replacement transi-
tions, respectively. The emission counterpart of F1

k,k′(τ) is
the term which survives at zero temperature, i.e. L1

λ,λ′
(τ).

Even at finite temperature, one can interpret L1
λ,λ′

(τ) as
the transition of a relaxed conduction-electron to the va-
lence band with an instantaneous rearrangement of the
Fermi sea to the new states in which the electrons do
not feel the hole potential. Such transitions are medi-
ated by exchange processes of electrons inside the Fermi
sea, i.e., they are replacement transitions. These exchange
processes are described by the operator XE. At zero-

temperature limit, the terms F1
k,k′(τ) and L1

λ,λ′
(τ) become

the zero-temperature expressions obtained by Mahan.
The term F2

k,k′(τ) represents new physical processes
adding interesting features related to temperature effects.
The first one has been interpreted as the matrix elements
which represent the thermally created electron-hole pairs
at energies in the vicinity the Fermi level. The second one
represents the replacement transitions of the photoexcited
electrons to conduction-band states bellow the Fermi level,
which are empty due to thermal excitation. On the other
hand, its emission counterpart, i.e. L2

λ,λ′
(τ), can be in-

terpreted as those transitions to the valence band whose
exchange processes are provided by occupied states be-
longing to the thermally created electron-hole pairs at en-
ergies around the Fermi level. When the temperature is
strictly zero, the Fermi surface has a sharp edge and the
electron-hole-pairs region disappears. In this situation, the
peculiar replacement transitions represented by F2

k,k′(τ)
and L2

λ,λ′
(τ) do not exist. These replacement transitions

contributing to the optical spectra only occur at finite
temperature.

2.3 PL spectra written in the final basis set

In order to arrive to the one-body approximation, we
can write the finite-temperature emission correlation func-
tion (6) in the basis set of the electronic final states [11].
Thus, using the definition of mλ, given in equation (3),
into equation (6), one easily obtains the total frequency
dependent PL spectra as a sum of two terms

E(ω) = E1(ω) +E2(ω). (19)

The first term, E1(ω), depends on L1
λ,λ′

(τ) which survives
at zero temperature

E1(ω) = 2Re
{∫ ∞

0

dτ eτ(ω+εh−iη)

×
∑
kk′

[
MkG1

k,k′(τ)M∗k′
]}

, (20)

where G1
k,k′(τ) is the vertex correction function defined as

G1
k,k′(τ) =

∑
λ,λ′

eτξλnTλn
T
λ′ 〈k| λ〉 Xλ,λ′(τ) 〈λ′| k′〉 . (21)

Xλ,λ′(τ) are the matrix elements of the operator X̂E in the
initial electronic basis set. One can verify that Xλ,λ′(τ) is
given by

Xλ,λ′(τ) = δλ,λ′ +
(
nTλ
)2

[ψ1(τ)]−1
λ,λ′ − [ψ2(τ)]λ,λ′ , (22)

with [ψ1(τ)]−1
λ,λ′ being the inverse of the matrix

[ψ1(τ)]λ,λ′ = δλ,λ′(1− nTλ )nTλ′ + nTλn
T
λ′φλ,λ′(τ), (23)
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and where φλ,λ′(τ) =
∑
k eτ(ξλ−ξk) 〈λ| k〉 〈k| λ′〉 . The ma-

trix elements of equation (22) also depends on ψ2(τ) de-
fined by

[ψ2(τ)]λ,λ′ =
∑
λ1

[ψ1(τ)]−1
λ,λ1

(
nTλ1

)2
φλ1,λ(τ). (24)

The second term in equation (19) depends on L2
λ,λ′

(τ)
which vanishes at zero temperature and is defined by

E2(ω) = 2Re
{∫ ∞

0

dt ei(ω+εh−iη)t

×
∑
kk′

[
MkG2

k,k′(τ)M∗k′
]}

, (25)

where the vertex function, for this case, is given by

G2
k,k′(τ) =

∑
λ,λ′

eτξλnTλ 〈k| λ〉 {δλ,λ′

− nTλ′(φX )λ,λ′
}
〈λ′| k′〉 , (26)

with

(φX )λ,λ′ ≡ [φX (τ)]λ,λ′ =
∑
λ1

φλ,λ1(τ)Xλ1 ,λ′(τ). (27)

The parameter η, in the integrals (20) and (25), is a damp-
ing coefficient that guarantees the convergence of the in-
tegrals and which along this paper is taken as 0.07 ~ωc.
In order to make the whole numerical processes feasible,
such integrals are performed following the procedure de-
tailed in [12] and references therein.

3 Application of the theory

We apply the above theory to the case of an n-doped Q2D
system under the presence of both a perpendicular mag-
netic field B and a weak periodic modulation potential ap-
plied in the y-direction of the xy plane. As detailed in ref-
erence [19], the modulation potential V (y) = Vm cos(Gy),
where G = 2π/a, a being the period of the modulation
potential. Such a potential can be treated in first order
perturbation theory whenever the amplitude of the mod-
ulation Vm is small compared with typical energies (cy-
clotron energies) of the system. Thus, both the energy
εjn(k) and the wavefunction ψ1

nk(x, y) of the electron in a
subband jn can be written as

εjn(k) = εj + (n+ 1/2)~ωc + 〈nk |V (y)|nk〉 , (28)

and

ψ1
nk(x, y) = ψ0

nk(x, y)

+
∑
n′ 6=n

ψ0
n′k(x, y) 〈n′k |V (y)|nk〉

(n− n′)~ωc
· (29)

Here ωc is the cyclotron frequency, εj is the two-
dimensional subband energy in absence of the magnetic

field, k is the wave vector in the x-direction, and n is the
Landau level index. Also, 〈n′k |V (y)|nk〉 are matrix ele-
ments obtained from

〈x, y|nk〉 = ψ0
nk(x, y) =

1√
2π

eikxχnk(y), (30)

which is the single-particle wave function in the ab-
sence of the modulation potential. Here, χnk(y) =

1q
2nπ

1
2 lbn!

exp
[
−(y−y0)2

2l2b

]
Hn

(
y−y0
lb

)
, is the harmonic os-

cillator function in the y-direction, where lb is the mag-
netic length, Hn(x) a Hermit polynomial and y0 = −l2bk is
the classical orbit center depending on the wave vector k.
We have used the z-direction single-particle wave function
as a delta function centered at the origin ze = 0. In our
calculations, we will include only one conduction subband,
j = 1, and two lowest Landau levels, n = 0, 1. The sub-
band structure is shown in Figure 3 of reference [19]. Elec-
tronic properties of such systems have been extensively
studied both theoretically [22,23] and experimentally [14],
and we are considering the same single-particle treatment
which has been adopted in the theoretical works.

For simplicity, we will use a contact electron-hole in-
teraction of intensity Vh to describe the hole potential at
x = xh and y = yh. Such a potential is defined as

V hnk,n′k′ = Vhψ
1
nk(xh, yh)

[
ψ1
n′k′(xh, yh)

]∗
. (31)

As commented before, the optical-created hole is consider
as being localized by an impurity, in such a way that
(xh, yh) is the pair of coordinate localizing it in the plane.
Thus, we are working with a dispersionless valence band,
i.e., the hole has an infinite mass and can appear with any
values of (xh, yh). We will assume xh = 0 and study the
PL spectra by taking yh at different positions with respect
to the energy of the first Landau level εn=1(y0), which is
given by

εj=1,n=1(y0) = εj=1 + 1/2~ωc
+ Vme(G2l2b/4) cos(Gy0). (32)

This energy was obtained from equation (28). In absence
of the periodic potential, i.e. for Vm = 0, the Landau level
εj=1,n=1(y0) is degenerated in y0. Noticed that when, e.g.,
yh = 0 the hole is localized just bellow the conduction
states at the top of the first Landau level. In the next
section we are going to study the effect of different values
of yh on the PL spectra.

3.1 Results for a weak electron-hole interaction

Figure 1 shows finite-temperature emission spectra E(ω)
obtained from the sum of the two terms of equation (19).
These results have been calculated for an electron-hole po-
tential strength of Ve−h = −0.03. The energies are scaled
in ~ωc. The parameters used in the calculation are de-
picted in Figure 3 of reference [19], in which the half oc-
cupation of the lowest band is shown (ν = 1/2). The zero
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Fig. 1. Finite-temperature PL spectra, E(ω), for different val-
ues of the y-coordinate: yh = 0 (solid lines), yh = a/4 (dot
lines) and yh = a/2 (dashed lines). (a) T = 0, (b) T = 5 K, (c)
T = 10 K. The strength of the electron-hole contact interaction
is taken as −0.03.

for the x-axis, in all PL figures in this paper, is taken as
the threshold ωT , which is defined as the Fermi energy
of the system at zero-temperature. We analyze both the
zero- and the finite-temperature PL spectra for the cases
where the valence hole is localized at three different posi-
tions, yh, with respect to the modulation potential. These
positions are depicted by solid lines for yh = 0, dotted
lines for yh = a/4 and dashed lines for yh = a/2.

In Figure 1a we show the zero-temperature PL spec-
tra. For yh = 0 (the hole localized just bellow the top
of the lowest conduction band), the conduction states are
empty at zero temperature. In the absence of the many-
body effects (replacement transitions), one would expect
that this valence-hole localization should imply a maxi-
mum in the PL spectra coming from a direct exciton-like
recombination at (ω − ωT ) ' 0.12. This quantity is the
energy of the empty states at the top of lowest conduc-
tion subband. However, the maximum in the PL spectra,
for the yh = 0 case, occurs at an energy bellow the chemi-
cal potential, i.e. at energy lower than ωT . Therefore, one
deduces that, in the yh = 0 situation, the replacement
transitions originated by occupied states, are responsible
by the blueshift of the peak to energies below the Fermi

energy. Such a kind of behavior of the PL is a character-
istic effect of a FES.

On the other hand, for yh = a/4, the hole is localized
just bellow the conduction states at the vicinity of the
Fermi level for the ν = 1/2 situation. The blueshift related
to the replacement transitions also occurs since one would
expect that, in the absence of the many-particle effects,
the maximum of the PL spectra would occur at the energy
of the conduction band states in the vicinity the Fermi
level, i.e. at an energy (ω − ωT ) ' 0. Moreover, since in
the yh = a/4 case the hole is localized spatially closer to
the occupied conduction states, our results show that the
peak of yh = a/4 curve is more intense than that of the
yh = 0 case, as one would expect.

In the case where the hole has suddenly appeared at
yh = a/2 position, i.e. just bellow the states at the bot-
tom of the lowest conduction band, we observe the largest
intensity in the PL spectra. In this case the blueshift ap-
pearing in previous cases, does not occur since the max-
imum of the yh = a/2 curve is located at the energy of
the occupied states corresponding to the bottom of the
lowest conduction subband at (ω− ωT ) ' −0.12. The ab-
sence of any blueshift of the PL spectrum makes difficult
to identify the many-body effects.

Some important conclusions are drawn from Figure 1a.
The first one is to observe that, as one moves the hole from
yh = a/2 to yh = 0, the density of occupied states can be
naturally mapped out. The second conclusion is that the
most remarkable many-body effect occur when the hole
is localized just bellow the empty conduction states in
the vicinity of the Fermi sea. This case is achieved when
the hole is localized at the positions between yh = 0 and
yh = a/4.

Figures 1b and 1c show the temperature dependence
of the PL curves given in Figure 1a. For yh = a/2 and
yh = a/4, there is a decrease of the intensity of the PL
peaks as the temperature increases. The effect of the tem-
perature on the PL spectra, for these two cases, is similar
to those observed on the FES [24]. On the other hand,
the temperature variation of the PL spectra for yh = 0 ,
shows both a significantly intensity increase and a redshift
of the PL peak for increasing temperature. These effects
on the yh = 0 curve occur because the temperature pop-
ulates the electronic states in the vicinity the Fermi level
so that, they contribute to the PL process. According to
the finite-temperature results shown in Figure 1, one can
also observe that the cases which depend strongly on the
temperature variation are those in which the valence hole
is localized just bellow the empty conduction states, in
the vicinity of the Fermi surface at yh = 0 and yh = a/4
cases. This is due to the fact that the FES depends on the
behavior of the vicinity the Fermi surface whose empty
states will give rise to the electron-hole pairs region which
will appear for temperatures different from zero.

Since our main goal is to discriminate the impor-
tance of the new term L2

λ,λ′
(τ) presented in Section 2 ,

we show in Figure 2, the part of the PL spectrum pro-
duced by E1(ω). The difference between Figures 1 and 2
is due to replacement transitions characterized by E2(ω).
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Fig. 2. Part of the finite-temperature PL spectra represented
by the transitions characterized by the term E1(ω). Different
values of the y-coordinate are also show: yh = 0 (solid lines),
yh = a/4 (dot lines) and yh = a/2 (dashed lines). (a) T = 0,
(b) T = 5 K, (c) T = 10 K. The strength of the electron-hole
contact interaction is the same of Figure 1.

As discussed in Section 2, E2(ω) represents the transitions
mediated by exchange processes provided by those occu-
pied states which belong to the thermally excited electron-
hole pair region. This kind of transitions do not exist at
zero temperature so that, Figures 1a and 2a are identical.
By analyzing the finite-temperature results presented in
Figures 1 and 2 one can see that the effect of the E2(ω)
on the PL spectra is to provide the evidence of the FES
and causing an increase in all the peaks for different values
of yh. Finally, we would like to stress that the transitions
represented by E2(ω) have important contributions to the
total intensity of the PL spectra.

3.2 Results for a strong electron-hole interaction

In this subsection we will discuss the effect of the electron-
hole-interaction enhancement on the PL spectra. We are
going to analyze PL spectra where the strength of the
electron-hole potential Ve−h is taken as −0.08.

First, we are going to analyze the finite-temperature
PL spectra of the ν = 1 regime of the QHE. Our goal
here is to investigate both the temperature and the many-
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Fig. 3. Total PL spectra, E(ω) at ν = 1 (Vm = 0). Inset shows
the temperature dependence of the shake-up structure.

body effects on such a regime. The many-body effect is
responsible by the shake-up processes of the Fermi sea,
as the emission of a photon takes place, and leading to a
rearrangement of the final single-particle states to a new
situation without the presence of the valence hole. This
type of shake-up process is characterized by the existence
of an electron-hole pair in the final many-body state. The
electron-hole pair creation is an exclusive consequence of
the photon emission process and, therefore, it may occur
even at zero temperature.

By increasing the strength of Ve−h to −0.1, we present,
in Figure 3, the finite-temperature PL spectra given by
E(ω) for ν = 1 quantum Hall regime (without spin). This
regime has been achieved, in our calculation, by taking a
very weak modulation potential Vm, i.e. Vm ' 0. In this
situation, the lowest conduction subband becomes disper-
sionless and fully occupied (ν = 1). Figure 3 shows the
temperature dependence of the main peak, at (ω−ωT ) '
0, and corresponding to those recombinations from the
lowest Landau level. A shake-up structure appears clearly
at (ω − ωT ) ' −1. The difference between the energy po-
sition of the main transition peak and the shake-up struc-
ture is associated to the energy of the electron-hole pair
which appears in the many-body final state. A very im-
portant point to be stressed is that, in our calculation,
shake-up structures are possible because Ve−e 6= −Ve−h.
Therefore, no hidden symmetry [25] exists and many-body
effects can be observed in PL at ν ≤ 1. The inset of Fig-
ure 3 shows how the intensity of the shake-up structure
decreases with the temperature. One can interpret such
an intensity decrease as follows: the creation of the fi-
nal electron-hole pair becomes a less likely process since
the temperature tends to populate the empty states in
the second-Landau-band which will give rise to the final
electron-hole pair. The shake-up structure has not been
completely destroyed because at this value of temperature,
thermal excitation is not able to populate those empty
states in the second Landau level (T = 10 K→ 0.148 ~ωc).



662 The European Physical Journal B

−0.5 0.0 0.5
(ω−ωT)

0

2

4

6

E
1(

ω
)

T=0K
T=2K
T=5K
T=8K
T=10K

0

2

4

6

8

E
(ω

)

T=0K
T=2K
T=5K
T=8K
T=10K

(a)

(b)

Fig. 4. Finite-temperature PL spectra for the case in which the
hole is located in yh = a/4 and for some values of temperature.
(a) Total PL spectra, E(ω). (b) Part of the finite-temperature
PL spectra represented by the term E1(ω).

Let us return to the case in which Vm is taken as 0.15
and Ve−h is given by −0.08. This situation is characterized
by the filling factor ν = 1/2.

We show in Figure 4a, the effects of temperature for
the yh = a/4 case. As the electron-hole interaction in-
creases, our finite-temperature results show the develop-
ment of a small structure in the low energy region around
(ω−ωT ) ' −0.30. This structure already present at T = 0,
reaches a maximum height for a given range of tempera-
ture. For further increase of the temperature, those unoc-
cupied states at the lowest conduction subband become
populated, which leads to a decrease of the intensity of
this structure. For temperatures larger than T = 10 K
this structure practically disappears, showing that those
empty conduction states are responsible for the appear-
ance of this structure. As the structure at the low energy
side of the main peak becomes smaller, we can also see
that conduction states thermally populated contribute to
the PL spectrum, producing a small shoulder on the high
energy side of the main peak, around (ω − ωT ) ' 0.12.

The small structure in the low energy side of the main
peak, can be interpreted as follows: it corresponds to
shake-up processes of the Fermi sea, as the emission of a
photon takes place leading to a rearrangement of the final
single-particle states to a new situation without the pres-
ence of the valence hole. As mentioned above, this shake-

up process is characterized by the existence of an electron-
hole pair in the final many-body state. Notice that when
temperature increases and the unoccupied states at the
lowest conduction subband become more and more pop-
ulated, the creation of such a final electron-hole pair be-
comes a less likely process, once there will be less empty
states available in lowest conduction subband.

We would like to comment on eventual self-energy
effects on the shake-up results. The rate of making an
electron hole pair in the final state of the system, called
as R(ω) [9], quantifies the hole self-energy effects, which
should contribute to the intensity of the shake-ups once
included in the calculation. However, it would not result in
the appearance of different shake-up structures; it would
only contribute to the intensity of those structures which
would come from the electronic part of the correlation
function. The electronic part of the correlation function,
by itself, already shows shake-up structures.

Furthermore, as pointed out before, we have neglected
the electron-electron (e-e) scattering and assumed an in-
finitely long quasiparticle lifetime. Actually, this lifetime
should become shorter as the temperature increases since
the (e-e) scattering plays an important role. Such a scat-
tering can be taken into account by including the elec-
tron self-energy, which can be obtained within the GW
approximation. Such a self-energy becomes important at
the Fermi surface when the temperature increases [26].
However, the (e-e) scattering can be neglected in this work
since we are working with small values of temperature. Fi-
nally, we would like to stress that the main purpose here is
to investigate the new temperature contributions coming
from the electronic part of the PL correlation function.
The inclusion of effects such as the electron-electron and
hole-hole scattering, is the subject of a future interest.

In order to verify the finite-temperature contribution
of the term E2(ω) to the total PL spectra, we show in
Figure 4b the PL spectrum calculated with the termE1(ω)
only. One can see the effect of the replacement transi-
tions, represented by E2(ω), by analyzing the difference
between the curves of Figures 4a and 4b. Observe that
the term E2(ω), on top of causing a strong enhancement
in the intensity of the main peak, also represents a finite-
temperature contribution to the increased intensity of the
shake-up structure. On the other hand, the small struc-
ture appearing in the T = 0 curve is quickly destroyed at
a very small finite temperature. This means that the term
E1(ω) presents a small finite-temperature contribution to
the shake-up. Therefore, replacement transitions give the
main contribution to the shake-up processes in systems
with modulated Landau levels.

4 Conclusions

In conclusion the addition of the temperature effects on
the MND current-current correlation function which de-
scribes the PL spectra of doped semiconductors was re-
ported. We have found new terms arising from the nonuni-
tarity property of the projection-like operator. We have
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applied this finite-temperature approach to study temper-
ature and many-body effects on the PL Fermi-edge spec-
tra of a Q2D system under both a perpendicular magnetic
field and a weak periodic modulation potential. We have
studied the effect of the electron-hole interaction strength
on the spectra. There are Fermi sea shake-up processes,
whose temperature behavior and dependence on the va-
lence hole position, have been thoroughly analyzed.

The finite-temperature approach presented in this pa-
per provide an important tool towards the understand of
the behavior of FES intensities as a function of the tem-
perature. This behavior depends on the effects which are
determined by the new finite-temperature terms of the PL
correlation function. Although the direct comparison with
the experimental results should require a better descrip-
tion of the valence-hole, the experimental study of a Q2D
system as the one discussed theoretically in this paper,
can confirm the importance of the new finite-temperature
term of the PL correlation function.
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